Defect Chemistry and Proton Conductivity in Ba-based Perovskites
نویسنده
چکیده
The site incorporation mechanism of M dopants into ABO3 perovskites controls the overall defect chemistry and thus their transport properties. For charge balance reasons, incorporation onto the A site would require the creation of negatively charged point defects, such as cation vacancies, whereas incorporation onto the B site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen vacancy content, in turn, is relevant to proton conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. This work proposes that, on the basis of X-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, AC impedance spectroscopy, extended X-ray fine structure (EXAFS) and atomistic simulation, that nominally B-site doped barium cerate can exhibit dopant partitioning partially as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs. A series of dopants, La, Nd, Sm, Gd and Yb are adopted in doped BaCeO3 with the composition BaCe0.85M0.15O3-δ. Yb doped BaCeO3 yields the highest proton conductivity among all the doped samples. Compositional non-stoichiometry, which is closely tied to sample processing, is studied in a BaxCe0.85M0.15O3±δ series. It is indicated that low temperature synthesis is beneficial to reduce barium evaporation at elevated temperatures and in turn increase the proton conductivity. The chemical stability of BaCeO3 is investigated and Zr is used to stabilize BaCeO3 in CO2-rich atmosphere effectively. This result helps to commercialize doped BaCeO3 as the electrolyte material for SOFCs.
منابع مشابه
Defect chemistry and transport properties of BaxCe0.85M0.15O3-
The site-incorporation mechanism of M dopants into ABO3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B-site is accompanied by the generation of positively charged defects, typ...
متن کاملElectrical conductivity and defect chemistry of Ba x Sr 1 x Co y Fe 1 y O 3 d perovskites
Bulk BaxSr1 xCoyFe1 yO3 d compositions (BSCF) were synthesized by the solid-state reaction method. The electrical conductivity of ceramic bars was measured using a dc four-probe method as a function of temperature in air up to 970 °C. All compositions showed thermally activated p-type semi-conductivity up to ~450 °C and then a transition to metal-like conductivity. The smallpolaron hopping p-ty...
متن کاملSynthesis and characterization of proton conducting oxyanion doped Ba2Sc2O5.
In this paper we report the successful synthesis of the cubic oxyanion containing perovskites, Ba(2)Sc(2-x)P(x)O(5+x) (x = 0.4, 0.5), with the samples analysed through a combination of X-ray diffraction, NMR, TGA, Raman spectroscopy and conductivity measurements. Conductivity measurements indicate a p-type contribution to the conductivity in oxidizing conditions at elevated temperatures, with e...
متن کاملNovel PVA/La2Ce2O7 hybrid nanocomposite membranes for application in proton exchange membrane fuel cells
Proton exchange membrane fuel cells (PEMFCs) are electrochemical devices that show the highest power densities compared to the other type of fuel cell. In this work, nanocomposite membranes used for proton exchange membrane fuel cells as poly(vinyl alcohol)/La2Ce2O7 (PVA-LC) with the aim of increasing the water uptake and proton conductivity. Glutaraldehyde (GA) was used as cross linking agent ...
متن کاملStructural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation
Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and...
متن کامل